Зачем нужно масштабирование признаков? Как бы вы его провели?
Допустим, у нас есть линейная регрессия с двумя независимыми переменными, у которых совершенно разный масштаб. Например, значения одного признака находятся в диапазоне от 0 до 100, а второго — от 0 до 1. Чтобы подстроиться под такие признаки, модель подберёт коэффициенты так, что первый будет небольшим, а второй — большим.
Проблема тут возникает на этапе обучения. Дело в том, что скорость оптимизации таких коэффициентов не будет одинаковой: ведь при градиентном спуске мы найдём две частные производные и подберём единый для обеих производных коэффициент скорости обучения. В результате, на каждой итерации мы будем получать различающиеся значения градиента для разных направлений.
Есть несколько способов масштабирования: ▫️Нормализация. В данном случае все значения будут находиться в диапазоне от 0 до 1. ▫️Стандартизация. Масштабирует значения с учётом стандартного отклонения.
Для нормализации, например, можно использовать метод MinMaxScaler из scikit-learn. Для стандартизации в этой же библиотеке есть метод StandardScaler.
Зачем нужно масштабирование признаков? Как бы вы его провели?
Допустим, у нас есть линейная регрессия с двумя независимыми переменными, у которых совершенно разный масштаб. Например, значения одного признака находятся в диапазоне от 0 до 100, а второго — от 0 до 1. Чтобы подстроиться под такие признаки, модель подберёт коэффициенты так, что первый будет небольшим, а второй — большим.
Проблема тут возникает на этапе обучения. Дело в том, что скорость оптимизации таких коэффициентов не будет одинаковой: ведь при градиентном спуске мы найдём две частные производные и подберём единый для обеих производных коэффициент скорости обучения. В результате, на каждой итерации мы будем получать различающиеся значения градиента для разных направлений.
Есть несколько способов масштабирования: ▫️Нормализация. В данном случае все значения будут находиться в диапазоне от 0 до 1. ▫️Стандартизация. Масштабирует значения с учётом стандартного отклонения.
Для нормализации, например, можно использовать метод MinMaxScaler из scikit-learn. Для стандартизации в этой же библиотеке есть метод StandardScaler.
#машинное_обучение
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
The messaging service and social-media platform owes creditors roughly $700 million by the end of April, according to people briefed on the company’s plans and loan documents viewed by The Wall Street Journal. At the same time, Telegram Group Inc. must cover rising equipment and bandwidth expenses because of its rapid growth, despite going years without attempting to generate revenue.
How to Invest in Bitcoin?
Like a stock, you can buy and hold Bitcoin as an investment. You can even now do so in special retirement accounts called Bitcoin IRAs. No matter where you choose to hold your Bitcoin, people’s philosophies on how to invest it vary: Some buy and hold long term, some buy and aim to sell after a price rally, and others bet on its price decreasing. Bitcoin’s price over time has experienced big price swings, going as low as $5,165 and as high as $28,990 in 2020 alone. “I think in some places, people might be using Bitcoin to pay for things, but the truth is that it’s an asset that looks like it’s going to be increasing in value relatively quickly for some time,” Marquez says. “So why would you sell something that’s going to be worth so much more next year than it is today? The majority of people that hold it are long-term investors.”
Библиотека собеса по Data Science | вопросы с собеседований from vn